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Nowadays there is a multitude of measures designed to capture different aspects of network structure. To be
able to say if a measured value is expected or not, one needs to compare it with a reference model �null model�.
One frequently used null model is the ensemble of graphs with the same set of degrees as the original network.
Here, we argue that this ensemble can give more information about the original network than effective values
of network structural quantities. By mapping out this ensemble in the space of some low-level network
structure—in our case, those measured by the assortativity and clustering coefficients—one can, for example,
study where in the valid region of the parameter space the observed networks are. Such analysis suggests
which quantities �or combination of quantities� are actively optimized during the evolution of the network. We
use four very different biological networks to exemplify our method. Among other things, we find that high
clustering might be a force in the evolution of protein interaction networks. We also find that all four networks
are conspicuously robust to both random errors and targeted attacks.

DOI: 10.1103/PhysRevE.75.046111 PACS number�s�: 89.75.Fb, 82.39.Rt, 89.75.Hc

I. INTRODUCTION

Network structure �1–3� is usually defined as the way a
network differs from what is expected. What “expected”
means depends on the fundamental constraints on the net-
work, and this can vary from system to system. For example,
if the network is made of units that must be connected to
two, and only two, others; then, it is not interesting whether
or not a vertex lies on a cycle �we already know that it will�.
The ensemble of all networks fulfilling the fundamental con-
straints on the system is usually called null model �or refer-
ence model�. When we have pinned down the null model we
can measure the network structure by standard quantities. If
the values of these quantities differs significantly from the
null-model average, then we call the network structured. The
baseline assumption of complex network theory is that net-
work structure carries information about the forces that have
formed the network. Ever since the studies of Barabási and
co-workers �1,4�, the degree distribution �or, if referring to
the set of degrees of one particular network, degree se-
quence� has been regarded as the most fundamental network
structure. For many networks, the degrees are related to outer
factors �not emerging from the network evolution�. In such
cases the ensemble of all graphs with the same degree se-
quence as the original network is a natural null model. An-
other interpretation is that the network structures measured
relative to this null model are of higher order than the
degree—i.e., what remain after the effects of the more fun-
damental structure �the degree sequence� is filtered away.
The usual way to use a null model is to compare a network
measure with the ensemble average value of the null model.
In this paper we will argue that one can glean more informa-
tion about the original network by studying the null model
ensemble in greater detail than just measuring averages. The
particular null model we use in this paper is the above-

mentioned—random graphs conditional to the same set of
degrees as the original network—but this can lead straight-
forwardly to other more, or less, constrained null models.

We consider networks that can be modeled as a graph G
= �V ,E�, where V is the set of N vertices and E is the set of
M undirected edges. We denote the ensemble of graphs with
the same degree sequence as G as G�G�. Our basic approach
to study G�G� is to resolve its members in the space of higher
order network structures. The two such higher order network
structures we consider in this paper are the correlation be-
tween the degrees at either side of an edge �measured by the
assortative mixing coefficient, r �5�, or simply assortativity�
and the fraction of triangles in the network �measured by the
clustering coefficient, C �3,6��. By mapping out G�G� in the
space defined by r and C one can pose questions such as the
following: How large is the region in r-C space where mem-
bers of G�G� actually exist? �This helps us answer how con-
strained the network evolution is if the degrees are given.� Is
the real network close to G�G�’s boundaries in r-C space?
�Which would indicate whether or not r or C are actively
optimized.�

The basis for our exploration of an ensemble G�G� is to
map out its members in the space defined by some network-
structural measures, in our case the assortativity and cluster-
ing. We measure the relative size of the largest connected
component, the average distances within the largest con-
nected component, the error and attack robustness for all our
test networks. We explore the r-C space by successively re-
wire pairs of edges, �i , j� and �i� , j�� to �i , j�� and �i� , j�, that
takes the system in a desired direction. Rewiring techniques
for studying networks are half a century old �7�. In the phys-
ics literature these techniques were first used in Refs. �8,9�.
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II. NETWORK STRUCTURAL MEASURES

One fundamental network structure is assortativity—the
correlation between the degrees at either side of an edge. A
simple way of measuring this structure is by the assortativity
�3� r. If one use an edge list representation internally �i.e., let
the edges be stored in an array of ordered pairs
�i1 , j1� , . . . , �iM , jM�� then �5�

r =
4�k1k2� − �k1 + k2�2

2�k1
2 + k2

2� − �k1 + k2�2 , �1�

where, for an edge �i , j�, k1 is the degree of first argument
�i.e., the degree of i� and k2 is the degree of the second
argument. The range of r is �−1,1� where negative values
indicate a preference for high connected vertices to attach to
low-degree vertices, and positive values means that vertices
tend to be attached to others with degrees of similar magni-
tudes.

For some classes of real-world networks there is a strong
tendency for triangles �fully connected subgraphs of three
vertices� to form in the network. The network measure of the
density of triangles is called clustering coefficient and is
commonly measured by �6�

C = 3ntriangle/ntriple, �2�

where ntriangle is the number of triangles and ntriple is the
number of connected triples �subgraphs consisting of three
vertices and two or three edges�. The factor three is included
to normalize the quantity to the interval �0,1�.

Two quantities that are, perhaps more than any other, re-
lated to the functionality of dynamic processes on the net-
work are the relative size of the largest component �con-
nected subgraph� s, and the average distance �d�. s is simply
defined as the number of vertices in the largest component
divided by N. The distance d�i , j� between two vertices i and
j is defined as the number of edges in the shortest path be-
tween these two vertices. �d� is d�i , j� averaged over all ver-
tex pairs �i� j� in the largest component. In a network with
large s and small �d�, spreading processes will be fast and
far-reaching. This is a good property of information net-
works, but bad in the context of, for example, disease spread-
ing. For most purposes, we believe, valuable information
gets lost in such a combination �a fragmented network G
with short average distances can be something very different
from a connected graph of large distances and the same av-
erage reciprocal distances as G�.

One line of complex-network research is the study of the
response of the network to attacks, errors, failures and other
events that effectively change the structure. The error re-
sponse problem is usually formulated as follows: How does
the functionality of the network change if a random fraction
of the vertices, or edges, is removed �3�? The attack problem
is the same, except that the vertices are not selected ran-
domly but according to some strategy intended to decrease
the networks’ functionality as rapidly as possible �10,11�. A
frequently used metric for functionality is the ratio of s be-
fore and after the event �10–12�. In the error and attack ro-
bustness problems, this quantity is typically plotted as a

function of the number of removed vertices. Since we aim at
mapping out the r-C space of degree sequences, we would
like to capture the robustness with just one number. We will
use what we call the f-robustness Rf of a network as the
expected fraction of vertices that needs to be removed for the
relative size of the largest component to decrease to a frac-
tion f � �0,1� of its original value. The way of removal can
either be random �the error problem� or selective �the attack
problem�. For the rest of the paper we will set f =1/2, and
refer to the 1/2-robustness just as “robustness” R. Other f
values give slightly different results, but our conclusions will
hold for a range of intermediate f values.

III. THE ANALYSIS SCHEME

The fundamental idea of our method is simple: we update
the network by choosing pairs of edges randomly, say �i , j�
and �i� , j��, and swap one end of them �forming �i , j�� and
�i� , j��. This guarantees that the degree sequence stays intact.
We navigate in the r-C space by only accepting changes that
move us in the desired direction. If an edge-swap would
introduce a self-edge �i.e., if i= j� or i�= j� or a multiple edge
�i.e., if �i , j�� or �i� , j� belongs to E before the swapping, or
move� it is not performed. There are many other technicali-
ties concerning the convergence to extremes, uniformity of
the sampling and more that we discuss in the Appendix.

The members of the ensemble G�G� do not, in general,
cover the whole range of �r ,C� values. Indeed, for any finite
G, G�G� defines a set of points, rather than a continuous
region, in the r-C space. We will perform a more coarse-
grained analysis breaking down the r-C space into pixels and
average quantities over the graphs of G�G� with �r ,C� values
within the pixel. �Thus a pixel constitutes a graph ensemble
in itself, our aim is to sample its members with uniform
randomness.� For a computationally tractable resolution, the
pixels containing members of G�G� typically form contigu-
ous regions. We will refer to the pixels that contain a mem-
ber of G�G� as valid pixels, and all pixels that are valid or
between valid pixels the valid region of G�G�.

To trace the valid region of G�G� we start by finding the
lowest and highest assortativity value, rmin and rmax, respec-
tively. Briefly speaking, to find rmin we rewire edge pairs that
lower r �and vice versa for rmax�. After finding the extremal r
values, we splice the region between these into L segments.
Then we go through the region and for each region n
� �1,L� we find the minimal and maximal C values, Cmin�n�
and Cmax�n�. The region in C-space between the lowest
Cmin=min1�n�LCmin�n� and highest Cmax=max1�n�LCmax�n�
observed clustering coefficient is segmented into L regions.
�Note that Cmin, without argument, is the global clustering
minimum, whereas Cmin�n� is the minimum conditioned on r
being in the nth segment.� Thus we �assuming our method
works� obtain an L�L grid of the r-C space that contains the
valid region of G�G�. The method is illustrated in Fig. 1 and
described in detail in Appendix A.

IV. NETWORKS

Our method can be applied to every kind of system that
can be modeled as an undirected network. To limit ourselves,
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we use four networks from biology as examples in this paper.
These networks are, nonetheless, representing fundamentally
different systems.

Cancer is a disease that occurs due to changes in the ge-
nome. One important process causing such changes is gene
fusion—when two genes merge to form a hybrid gene �13�.
In Ref. �14� the authors construct a network of human genes
that have been observed to be fused in the development of
tumors in humans. Some genes can fuse with many others
but most of the genes have only been observed fusing with
one, or a few others. Statistics of this and the other networks
are listed in Table I. The second example network represents
the metabolism �the cellular biochemistry except signaling
processes� of humans. It is constructed by connecting the
substrates of a reaction with the products �a so called sub-
strate graph �15��. Furthermore are the most common chemi-
cal substrates removed �according to the method in Ref.
�16��—this is commonly done since these substances are so
common that they does not put any constraint on the bio-
chemical flow. In protein interaction networks the vertices
are proteins and two proteins constitute an edge if they can
interact physically. We use the �“physical interaction”� data

set from Ref. �17� of protein interaction in the budding yeast
S. cerevisiae.

Like metabolic networks there is a question how to rep-
resent neural network—either one use a coarse-grained rep-
resentation of a complex organism’s nervous system �18�, or
the complete neuronal map of a simple organism. In this
work, we take the latter approach and use the neural network
of C. elegans �19�.

In this work we assume the subject network to be accu-
rate. To get more valid error estimates for our structural mea-
sures, one would need to take the accuracy of the edges into
account.

V. NUMERICAL RESULTS

In this section we present numerical results for our four
network-structural measures over the G�G� ensembles of the
four test graphs. To get a first view, we display the valid
region of the gene fusion graph in Fig. 2�a�. As seen, the
valid region is not covering a large part of the theoretical
limits of r �−1�r�1� and C �0�C�1�. The requirement
that the graph should be simple �no multiple edges or self-
edges� puts hard constraints on the actual r values that can
occur �cf. Ref. �20��. Figure 2�a� shows that, considering the
entire r-C plane, such constraints are even harder. The gen-
eral shape of the valid region is consistent with the observa-
tions that the simple-graph constraint induce a positive cor-
relation between r and C �20,21�.

In Figs. 2�b�, 2�c� and 2�d� we show three example net-
works of G�G� �where G is the gene fusion network�. Figure
2�b� displays the relatively fragmented real network. Figure
2�c� is a random network G� with the almost the same r-C
coordinates as the real network ���G ,G���0.0026�. Maybe
the biggest visible difference between G and G� is the larger
size of the largest component of G�. Is it true that the gene
fusion network is unusually fragmented, given the degree
sequence and r-C coordinates? If so, there might be an evo-
lutionary pressure for gene fusion networks to be frag-
mented. Figure 2�d� shows, as a contrast, a network far away
from G and G�. The network has a well-defined core where
high-degree vertices connect to each other. There are also a

TABLE I. Basic statistical properties of the example networks
we use. The number of vertices N, number of edges M, assortativity
r, clustering coefficient C, relative size of the largest cluster s, av-
erage distance in the largest cluster �d�, the error robustness Rerror,
and the attack robustness Rattack.

Gene fusion Protein interaction Metabolic Neural

N 291 4168 1905 280

M 278 7434 3526 1973

r −0.36 −0.13 −0.10 −0.069

C 0.0016 0.034 0.039 0.20

s 0.38 0.94 0.87 1

�d� 4.2 4.8 4.5 2.6

Rerror 0.43 0.36 0.36 0.50

Rattack 0.012 0.048 0.046 0.38
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FIG. 1. �Color online� Illustration of the analysis scheme ap-
plied to the C. elegans neural network. Panel �a� shows how the
valid region is mapped out: �1� rmin is located. �2� rmax is found and
the interval �rmin,rmax� is divided into L segments. �3� Cmin�n� is
constructed. �4� Cmax�n� is traced and the interval �Cmin,Cmax� is
segmented into L regions. Panel �b� illustrates the sampling of the
pixels. The next pixel to go to is chosen from a random permutation
of the pixels. In this example n and n� are chosen to be far apart.
The line shows the path taken by the algorithm. The circles indicate
every thousandth step on the way from n to n�. The blowup illus-
trates the random walk within a pixel to sample the graphs of the
pixel more randomly.
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number of peripheral triangles, which indicates that the net-
work evolves toward a maximal C value, given its assorta-
tivity.

A. Location in r-C space

In Fig. 3 we plot the relative size of the largest component
of the four test networks. We also display the locations of the
actual networks in the r-C plane, and the G�G� averages.
�The G�G� averages are obtained from a rewiring sampling
of G�G�, see Appendix A.� We see that the C value of the

gene fusion graph lies close to the Cmin�r� boundary of its
valid region. C averaged over the whole G�G� is about three
times larger ��C�G�G�=0.0061±0.0001� than the observed
value �C=0.0017�. Furthermore, we see that the assortativity
is lower than the G�G� average. This kind of analysis has
been used by many authors �following Ref. �8��. The inter-
pretation is usually that the network is, effectively, disassor-
tative and clustered �i.e., r� �r�G�G� and C� �C�G�G��. How-
ever, looking at the entire valid region, we can get another
perspective: If high clustering really would have been an
important goal for the network �given the degree sequence�
there is large room for improvement. For the assortativity, on
the other hand, the observed network is rather close to the
minimum. This might be telling us that assortativity is a
more important factor, than clustering, in the evolution of the
gene fusion networks. The protein interaction network of
Fig. 3�b� is located quite far from the ensemble average—the
assortativity is much lower than the G�G� average, and given
that assortativity, the clustering is maximal. Also the meta-
bolic �Fig. 3�c�� and neural �Fig. 3�d�� networks are more
clustered than the average, but here the assortativity is
slightly larger than the G�G� average. From Fig. 3 we also
note that the density of states is very inhomogeneous
distributed—the average �r ,C� is close to C=0 and �except
for the neural network� left of the middle of the assortativity
spectrum. This is confirmed by a brief, unbiased sampling of
G�G�; we generate 105 members of G�G� and measure the
extreme values of r and C �and repeat the procedure ten
times to obtain error estimates�. These intervals for the meta-
bolic network are �r= �−0.164�4� ,−0.147�4�� and �C
= �0.0075�2� ,0.0099�2��, which is one 24th and one 180th,
respectively, of the full valid ranges. Similar observations
hold for the other networks. This illustrates why the full
valid r-C region cannot be sampled by random rewiring—
the extreme networks are just too rare to be sampled—but
the real values �r=−0.101, C=0.0394� are also extreme.

The shapes of the valid regions are rather similar, with an
exception for the broader region of the neural network. This
can be related to the more narrow degree sequence of the
neural network �22�. We have established a correlation be-
tween r and C. Reference �21� argues that such correlation
occurs in social networks because of their modularity �or
“community structure” as the authors call it�. However, our
large-r networks have no explicit bias towards high modu-
larity, which leads us to conjecture that the correlation be-
tween r and C, or more fundamentally the sum ��i,j��Ekikj

�which, given a degree sequence, is the only factor of Eq. �1�
that can vary� is a more general phenomenon �cf. Ref. �23��.
Since r is normalized by, essentially, the variance of the de-
gree, it follows that the valid region for G�G� with more
narrow degree sequence will appear stretched �larger�.

B. Size of largest component

Turning to the average size of the largest component, we
observe that the gene fusion network is indeed more frag-
mented than the average network of the same �r ,C� coordi-
nates �as anticipated from comparing Figs. 2�b� and 2�c��.
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FIG. 2. �Color online� The valid region demarcated by the �a�
Cmin�r� and Cmax�r� curves and three networks: �b� is the original
gene fusion network; �c� shows a random sample with r-C coordi-
nates close to those of the real network. Panel �d� shows a network
with high clustering and high assortativity. The largest component
of �b�, �c�, and �d� are indicated with a different color.

0

0
0 0.1

cl
us

te
ri

ng
co

effi
ci

en
t,

C

1

cl
us

te
ri

ng
co

effi
ci

en
t,

C

s

−0.2

assortativity, r

assortativity, r

assortativity, r

assortativity, r

0.4

0.5

0.6

0.3

0.3

0.2

0.1

0
0 0.2 0.4

0.999

cl
us

te
ri

ng
co

effi
ci

en
t,

C

cl
us

te
ri

ng
co

effi
ci

en
t,

C

−0.6 −0.4 −0.2

0.2

0.3

0.4

0.5

0.6

0.1

s

(c) metabolic

(a) gene fusion

s s

0.9

0.8

0.7
−0.1

(d) neural

(b) protein interaction

0.10.050−0.05−0.1−0.15

0.3

0.2

0.1

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0

0.4

0.2−0.4 −0.2 0

FIG. 3. �Color online� The relative size of the largest component
s as a function of r and C. The networks are �a� the network of gene
fusions in tumors in humans, �b� protein interaction network of S.
cerevisiae, �c� human metabolic network and �d� the C. elegans
neural network. The �-like symbols of the main figures and the
diamond symbols of the color bars indicate the values of the real
networks. The plus-like symbol indicates the average �r ,C� value of
the G�G� ensemble.
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The protein interaction and neural networks have no particu-
lar bias in this respect, whereas the metabolic network is
more fragmented than expected. The relatively low s of the
metabolic network can be attributed to the “modularity” of
such networks �15,16�. Such modules are subgraphs that are
densely connected within, and sparsely interconnected.
Sometimes they are even disconnected from the largest com-
ponent �which explains the lower s�. In general, s decreases
with assortativity. This is natural—in more assortative net-
works high degree vertices are connected to each other,
forming a highly connected core and a periphery too sparse
to be connected �viz. Fig. 2�c� and 2�d��. For the denser
networks �the protein interaction, metabolic, and neural net-
works� s increases with C �for a fixed r�. For the sparser
gene-fusion network s has a peak at intermediate C. We do
not speculate further about combinatorial cause of these de-
pendencies; but we note �comparing, e.g., Figs. 2�a� and
2�b�� that even though the shape of the valid regions are
similar, the s behavior can be qualitatively different.

C. Distances in the largest component

In Fig. 4 we display the average distance in the largest
component. As mentioned, measuring the distance can give
complementary information to the s�r ,C� graphs of Fig.
3—while s tells us how much of the network that can be
reached, �d� tells us how fast that can happen. For all net-
works the big picture is that large connected components
have large average distances. This is expected from most
network models. There is, however, more information than
this in Fig. 4: For components of the same size, the average
distance is �except for the gene fusion network� increasing
with both r and C. That �d� should increase with C seems
quite natural—if one of a triangle’s edges is rewired to con-
nect two distant vertices, the distances in the surrounding of
the triangle would increase with one, but this would be more
than compensated by the connection of the two previously
distant areas. Disassortative networks typically lack a well-
defined core. Such cores are known to keep the average dis-

tance of general power-law networks short �24�. Thus one
would expect an increase of r to cause a larger �d�, but ap-
parently the clustering-related increase of the average dis-
tance outweighs this effect. In contrast to the relative size,
the average distances of the real networks are close to the
G�G� averages at the same r-C coordinates. The behavior of
the gene fusion network is the opposite of the others. As seen
in Sec. V B, s varies more for the gene fusion network than
the other networks—it is natural that the larger-network-
larger-�d� effect is dominant over the clustering-related in-
crease mentioned above, which explains why the largest av-
erage distances of the gene fusion network is in the low-C
and low-r corner of the �C ,r� space.

D. Error robustness

Next, we turn to the error robustness problem. As seen in
Fig. 5 the G�G� ensemble of the gene fusion network �Fig.
5�a��, once again, has a qualitatively different behavior than
the other three networks �Figs. 5�b�–5�d��. While the gene
fusion network is most robust for high r and C values the
other networks are most robust for low r. A sketchy expla-
nation can be found in the chainlike subgraphs extending
from the largest component in a large-r network �cf. Fig.
2�—with a random deletion of vertices, these subgraphs are
likely to be disconnected from the core rather soon �whereas
in a disassortative network alternative paths may still exist�,
then if the deletion-robust core is less than half of the origi-
nal component size it follows that it may soon be isolated.
The sparsity of the gene fusion network makes the low-r
G�G� graphs much like trees �i.e., having few cycles�, and
since cycles provide redundant paths that can make a net-
work robust, it follows that these graphs are fragile. For a
fixed r, Rerror is a decreasing function of C for the three
largest networks. We believe this is an effect of the local path
redundancy induced by triangles—if one vertex of a triangle
is deleted, the other two are still connected. For the gene
fusion network the behavior is once again opposite from the
others—the most robust networks have high C and r. For this
network in particular the above-mentioned treelike sub-
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graphs increase in frequency with C and r which explains the
different behavior.

The Rerror values for the real networks are always mark-
edly higher than the G�G� averages for the same �r ,C� coor-
dinates. Networks with highly skewed degree distributions
�the gene fusion, protein interaction and metabolic networks�
are known to be robust to errors by virtue of degree distri-
bution alone �11�, now Fig. 5 tells us that all these networks
have a yet higher error tolerance which is an indication that
error robustness is an important factor in the evolution of
these networks.

E. Attack robustness

The final quantity we measure is the attack robustness
�see Fig. 6�. Rattack’s functional dependence on r and C is
quite different from that of Rerror. The gene fusion G�G� has
the highest attack robustness at high r and low C values. The
other networks have higher robustness values for high assor-
tativity, but no clear tendency in the C direction. The attack
mechanism we study targets the high degree vertices. Having
all high degree vertices connected to each other is probably
the only way to keep the network from instantaneous frag-
mentation. The observed r dependence is thus rather ex-
pected. The real-world networks all have Rattack values of the
same order of magnitude as the average values for the G�G�
networks of the same location in r-C space. We note that for
studying the attack problem of metabolic networks, the �less
common� enzyme centric graph representation is more ap-
propriate �see Sec. IV�. The reason being that one can sup-
press an enzyme much easier than removing the substrates.

F. Comparison between the graphs

Even though all our example networks are constructed
from biological data, they represent fundamentally different
systems—the neural network is spatial by nature, the protein
interaction and �even more so� the metabolic networks are
the background topology for an active dynamic system,

whereas the gene fusion network is a representation of pos-
sible but undesired events. The protein interaction, metabolic
and neural networks have one thing in common—the organ-
ism needs them to be robust to errors �caused by injuries,
mutations, disease etc.� �25�. As mentioned above and sum-
marized in Table II the error robustness is indeed higher for
the real networks than the G�G� ensemble at the same �r ,C�
coordinates. As mentioned above, the attack robustness of
the real network is of the same order as the G�G� average at
the same �r ,C� coordinate, but actually there is a significant
tendency that these network also are more robust to attacks.
Furthermore, the distances in the largest component, and the
relative sizes s are �with the neural network s value as the
only exception� smaller in the real than the G�G� networks.
In general, none of the networks have the same structural
measures as the G�G� averages at their coordinates. This sug-
gests that the degree-distribution, assortativity, and clustering
coefficient are not enough to fully describe the structure of
the network.

Despite these similarities between the statistics of the
real-world networks the r-C space of the different degree
sequences have qualitatively different network structure. Es-
pecially, the gene fusion network behaves almost the oppo-
site of the other networks �at least for s, �d� and Rerror. The
source of this opposite behavior �as we discuss above� is
probably that it is much sparser than the other networks. The
neural network is the densest network and the only one that
does not have a power-law-like degree distribution.

VI. DISCUSSION

Different quantities for measuring network structure are
usually not independent. This is usually seen from correla-
tions between quantities in ensembles of networks. This
makes it hard to hypothesize about evolutionary favorable
network structure from values of quantities alone. In this
paper we suggest a method to analyze null models and the
original network, in parallel, so that the constraints on the
network’s evolution and the correlations of the quantities are
easier to infer. Using this information one can make hypoth-
eses about the microscopics of the evolution. The particular
null model we use is G�G�—the ensemble of graphs with the
same degree sequence as the subject graph G. In this work

TABLE II. Summary of the network structural measures of the
real world networks relative to the average values of the G�G� a
distance ��0.02 from the real network. “�” indicates that the real
network have a lower value than the corresponding G�G� value. All
results are significant with p values �0.01, except the s value of the
neural network that has a p value of 	0.05.
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we map out G�G� in the two-dimensional space defined by
the clustering coefficient and the assortativity. Then we mea-
sure other network structural quantities throughout this space
�or, alternatively, one can use other studies linking r and C to
the performance of the system�. One formal way to see our
method is that we resolve G�G� in the �high dimensional�
space of all sensible network measures. Then, for simplicity,
we project to a few dimensions. �The case of projection to
one dimension has been studied in a less formalized way
earlier—projection to assortativity �26� or a “hierarchy”
measure �27�.� For example, if G is just beneath the bound-
ary of the r-C space, and the boundary, at that location, runs
in the r direction �so that C values larger than G’s would fall
outside of G�G��, then a few changes can bring the network
in any direction in the �r ,C� space except in the positive C
direction. In such a situation we can surmise that there is an
evolutionary force driving the network towards high cluster-
ing. Further, one can include other network structural mea-
sures �like average largest component size, pathlength, error
and attack robustness� to make the study more detailed. The
method can, straightforwardly, be generalized to temporal
network data. In such cases one can observe the movement
of G in the �r ,C� space and make yet more relevant hypoth-
eses of the network forming forces.

We exemplify our method by studying four different bio-
logical networks. The functional characteristics of the r-C
spaces varies much between the four example networks. For
example, the C. elegans neural network covers a much larger
area of the r-C space than the other networks; whereas the
other networks have a valid region of similar shape and size.
Despite this similarity, the gene network shows a structural
dependency on r and C that is very different from the meta-
bolic and protein interaction networks. The position of the
real networks in the valid region of the r-C space adds some
further information. For example, the gene network is close
to the border in the r direction, but not in the C direction,
suggesting that assortativity has been a more important fac-
tor, than clustering, in the evolution of the network. Further-
more we compare the network structure of the real networks
with the average values of networks in G�G� that are close to
the �r ,C� coordinates of the real network. From this analysis,
we conclude that all our four example networks are more
robust to both random errors and targeted attacks than what
can be expected from a random network constrained to the
same degree distribution, assortativity and clustering coeffi-
cient. For all networks, except maybe the gene fusion net-
work, this is in line with robustness being an important factor
in the network evolution.

The analysis scheme presented in this paper can be further
extended and analyzed. It would be interesting with a quan-
titative evaluation of the network-structural spaces, and how
they depend on the degree sequence. One can also, for time-
resolved data sets, incorporate dynamic information in the
analysis by monitoring the network-evolutionary trajectory
in the r-C space. By doing this one can observe the selective
pressure, in terms of assortativity and clustering, in the evo-
lution of the network. Yet another possibility is to identify
the structure that is most relevant for the network evolution
by some method similar to principal component analysis.
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APPENDIX A: DETAILS OF THE ALGORITHM

In this appendix we address details of the analysis scheme
�that, for clarity, were omitted from Sec. III�.

To find the G�G� elements of minimal and maximal assor-
tativity is a nontrivial optimization problem. There are deter-
ministic methods that, if they terminate, are guaranteed to
give the maximal �or minimal� assortativity �26,28�. To avoid
such technicalities and to simplify the program, we will use
the same kind of optimization algorithm to find rmax and rmin
as to find Cmin�n� and Cmax�n�. In Appendix B we will argue
that this method allows us to come as close to the optimal r
values as we need. A method we find efficient is to repeat the
simple edge-pair swapping procedure �where only changes in
the desired direction are accepted� with different random
seeds until no lower state is found during a number �rep of
repetitions �29�. Each individual edge pair is terminated
when no lowest state is found for �same swaps. In general, the
larger the network is, the more densely distributed are the
points close to the border of the valid region. If one is satis-
fied with finding a value a certain distance from the extrema,
then �rep and �same do not need to be increased for larger N.
To find Cmin�n� and Cmax�n� almost the same procedure is
employed. First, edge pairs are swapped until the desired
segment of r is found. Second, unless r is outside the seg-
ment n and the move takes the system yet further from seg-
ment, edge pairs are swapped provided the clustering would
decrease �for Cmin�n�� or increase �for Cmax�n��. When the
valid region is traced out and we sample networks of differ-
ent pixels, we select the pixels randomly. The idea is to
sample the space of networks more randomly.

To summarize, the algorithm for finding the extremal as-
sortativity values, rmin and rmax, is as follows.

�1� Choose two undirected edges �i , j� and �i� , j�� at ran-
dom. If the program makes a difference between the argu-
ments of the edge, the direction of the reading of the edge
also has to be randomized �so �i , j� is read as �j , i� with
probability 1 /2�.

�2� Check if swapping these edges to �i , j�� and �i� , j�
would introduce a self-edge or multiple edge in the network.
If so, go to step �1�.

�3� Let �r be the change in r if the move in step �1� is
executed. If r is to be minimized and �r�0, then accept the
change �vice versa for maximization of r�.

�4� If no move has been executed during the last �same
executions of step �3�, then take the current r as r̃min �or
r̃max�.

�5� Repeat from the beginning �rep times and return the
lowest observed r̃min during these iterations.

Given rmin and rmax, and a division of the r space into L
segments of width �rmax−rmin� /L, we trace the boundaries of
the valid region as follows.

EXPLORING THE ASSORTATIVITY-CLUSTERING SPACE… PHYSICAL REVIEW E 75, 046111 �2007�

046111-7



�6� Go through the regions sequentially. Say the nth re-
gion is the interval �rn ,rn+1�.

�7� Perform steps �1� and �2� of the assortativity optimi-
zation algorithm.

�8� Let �C be the change in clustering coefficient during
the previous step. If r�rn and �r�0, r�rn+1 and �r�0 or
rn�r�rn+1 and �C�0 �for minimization� or �C�0 �for
maximization�, then perform the change of step �6�.

�9� If, counting from the first time the system entered the
desired r segment, the minimal �maximal� C value has been
repeated �same times, take this value as C̃min�n� �C̃max�n��.

�10� Repeat from step �6� �rep times. Let the lowest
C̃min�n� values and largest C̃max�n� during these iterations be
Cmin�n� and Cmax�n�.

Then, when the valid region is mapped out, we split the C
range �between Cmin and Cmax� in L segments of equal width,
thus forming an L�L grid enclosing the valid region. This
grid is sampled as follows.

�11� Construct a random list of the valid pixels �i.e., a list
where all valid pixels appear once and only once�.

�12� Pick the next pixel Pn= �rn ,rn+1�� �Cm ,Cm+1� from
the index list of step �11�. Denote the center ��rn
+rn+1� /2 , �Cm+Cm+1� /2� of the pixel �rn,0 ,Cm,0�. Let

��r,C� =
� r − rn,0

rmax − rmin
�2

+ � C − Cm,0

Cmax − Cmin
�2

�A1�

measure the distance in r-C space from the current position
�r ,C� to the center of the target pixel.

�13� Pick edge-pair candidates according to steps �1� and
�2� of the assortativity optimization algorithm.

�14� Calculate ��r ,C�=��r� ,C��−��r ,C� where r and C
are the current assortativity and clustering values, and r� and
C� are the values after the pending move has been per-
formed. If ��r ,C��0 perform the move.

�15� If the updated �r ,C� belongs to Pn, then, first, make
�rnd random edge swappings such that �r ,C� does not leave
Pn. �This is to sample the pixel more uniformly.� Then mea-
sure network structural quantities of Pn, save these values for
statistics, and go to step �12�.

�16� If not all pixels have been measured go to step �12�.
�17� Go to step �11� until each pixel have been sampled

�samp times.
The parameter values we use in this study are �unless

otherwise stated� the following: �same=105, �rep=5, �samp
=100, �rnd=1000, and L=50. The choice of parameters and
further considerations are discussed in Appendix B. Due to
the uncertain stopping conditions of steps �4�, �5�, �9�, and
�10� it is hard to derive meaningful bounds on the computa-
tional complexity. We note, however, that the optimization is
faster in r than in C direction, this probably relates to the
observation in Fig. 1�b� that swapping procedure moves
faster in the r than in the C direction. �The speed in the C
direction is roughly the same per 1000 steps, but the speed in
the r direction decreases.�

APPENDIX B: CONVERGENCE AND SAMPLING
UNIFORMITY

In this appendix, we address some technical issues of our
method related to the convergence of our optimization algo-

rithm and uniformity of the sampling. We will also motivate
our choice of parameters.

1. Assortativity and clustering extremes

To find the extremal assortativity values we use the edge-
swapping algorithm described in Sec. III. To find rmin we
start from a random member of G�G� and swap random edge
pairs �keeping the graph simple at all times� that lower r.
When no graph of lower r has been found for �same time
steps, we break the iteration. To avoid the effect of being
trapped in local minima, this process is repeated �rep times.
The main motivation for using this method is that it is at
heart the same scheme as for obtaining the extremal cluster-
ing values and sampling the valid region �and thus we can
reuse the same code for many steps of the calculations�. In
this section, we argue that the optimization performance of
this method is sufficiently good for our purpose.

There is a deterministic method to maximize the assorta-
tivity that is, if it exits properly, guaranteed to find rmax �28�.
The method works as follows: First all vertex pairs �i , j� are
ranked in decreasing order of the product of their degrees,
kikj. Then the edges are added in order of this list unless the
degree of one of the vertices already is fulfilled. There are
some other technicalities from the additional constraint �of
the authors� that the network should be connected. Of our
networks, only the neural network has such an evolutionary
constraint, so we do not impose it.

In Fig. 7 we display the parameter dependence of the
convergence for the gene fusion network. The horizontal line
is the theoretical maximum obtained by the algorithm of Ref.
�28�. When �same=10000 we obtain an average maximal as-
sortativity within 0.001 of the theoretical maximum �Fig.
7�a��. By increasing �rep the accuracy can be increased fur-
ther �Fig. 7�b��. The lattice spacing we use is 0.005	r
	0.02, so we deem a precision of 0.001 sufficient. The gene
fusion network is our smallest network but the other net-
works are not harder to converge. When one edge pair is
swapped so that r decreases, the only term of Eq. �1� that
changes is �k1k2�. The potential change of the sum
��i,j��Ekikj, in the calculation of �k1k2� �close to the extrema�
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FIG. 7. �Color online� Convergence of the optimization algo-
rithm. Panel �a� shows the average maximal assortativity �rmax�
with �rep=1. The horizontal line represents the result of the maxi-
mization algorithm of Ref. �28�. Panel �b� shows the further im-
provement by finding the maximum over many independent runs
�for �same=10000�. The vertical bars indicate the standard deviation
of the observed maxima.
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is of the order of the typical degree values of the network.
These values grow slower than the network itself, which
means that a larger network can be closer in r, but further
away in number of edge swaps to reach the global optimum,
than a smaller network. Some authors �28� use ��i,j��Ekikj to
measure the degree correlations, but since we strive for a
macroscopic level of description �consistent in the large-N
limit�, r is a more appropriate quantity for the present work.

The optimization of the clustering to find the minima
�maxima� of the segments of assortativity space follows the
same pattern as the method to find the minimal �maximal� r.
Changes of the parameters ��same and �rep� have the same
effect as in Fig. 7, and the same values seem sufficient.

2. Sampling uniformity

The other technical issue we address in this Appendix is
the uniformity of our sampling procedure. Ideally we would
like all unique �i.e., non-isomorphic� members of G�G� to be
sampled with the same probability. The most important ob-
servation is trivial—by edge-pair swapping one can go from
one member of G�G� to any other, and thus all members of
the ensemble will contribute to the averages. A much harder
question is whether or not every member of G�G� is sampled
with uniform probability. In this section, we will argue that
our algorithm does a reasonably good job in the sense that
there are no inconsistencies and parameter values are appro-
priate.

When the target pixel is found �step �15� of the algorithm�
we perform �rnd additional random edge-pair swaps. The idea
is to sample the G�G� members of the pixel more uniformly
�and indeed to be able to reach into the interior of the pixel�.
In Fig. 8�a� we illustrate the effect of these random moves.
We plot a normalized histogram of the relative largest cluster
size s for 0, 100, and 10000 random moves. We see that
these moves do make a difference �the �rnd=0 is different
from the �rnd=100� but it does not matter if �rnd=100 or
�rnd=10000. The same situation is observed for other pixels,
networks and quantities. Therefore, we use �rnd=1000 in this
work.

Next, we will illustrate the use of the randomly permuted
list in the sampling of the pixels �steps �11� and �12� of the
algorithm�. The motivation for this procedure is that the net-
work structure can depend on the direction from which the
search arrives to the pixel. In Fig. 8�b� we illustrate the test
procedure—we sample separate histograms from four start-
ing points in the four cardinal directions with respect to the
central �r ,C�= �−0.1,0.1� pixel. In Fig. 8�c� we see that the
histograms from the W and S pixels are different. There ap-
pears to be two regions of G�G� contributing to these histo-
grams �one with s�0.65, one with s�0.75�. Searches start-
ing from W seem to arrive at the s�0.75 region more

frequently, and searches staring at S ends up around s
�0.65 more frequently. The curve of the actual algorithm
weighs the two peaks more equal. The curves from N and E
coincides almost completely the curve for the regular algo-
rithm �and are therefore omitted for clarity�. The impression
we get is that the search from one direction can induce a bias
in the network structure �symbolically speaking, the graphs
have a preference for ending up in a certain region of G�G��.
However, from other directions, or by the random sampling
of pixels �step �11��, the bias is reduced. This picture is fur-
ther strengthened in Fig. 8�d� where we show that the aver-
age value of the histograms from the four starting points are
overlapping with the histogram of the regular algorithm.
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FIG. 8. �Color online� Histograms of s for the discussion of
sampling uniformity. All the histograms are from the gene fusion
network and a pixel centered around r=−0.1, C=0.1 �the dimen-
sions of a pixel are �r=0.013, �C=0.0096�. The error bars repre-
sent standard errors. Lines are guides for the eyes. Panel �a� shows
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pings �rnd within the pixel before the measurements of quantities.
Panel �b� illustrates the location of the starting point pixels used in
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